Continuous Profiling - Automated Analysis
Comprehensive guide to automated analysis systems for continuous profiling in Go applications. This guide covers automated performance analysis, anomaly detection, trend analysis, and intelligent alerting systems for production environments.
Table of Contents
- Introduction
- Automated Analysis Framework
- Performance Trend Analysis
- Anomaly Detection
- Intelligent Alerting
- Root Cause Analysis
- Predictive Analytics
- Integration and Deployment
- Best Practices
Introduction
Automated analysis transforms continuous profiling from reactive monitoring to proactive performance management. This guide provides comprehensive strategies for building intelligent analysis systems that can automatically detect issues, analyze trends, and provide actionable insights for Go applications.
Automated Analysis Framework
package main
import (
"context"
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
)
// AutomatedAnalyzer manages automated performance analysis
type AutomatedAnalyzer struct {
dataCollector *ProfileDataCollector
trendAnalyzer *TrendAnalyzer
anomalyDetector *AnomalyDetector
alertManager *AlertManager
rcaEngine *RootCauseAnalyzer
predictor *PerformancePredictor
reportGenerator *ReportGenerator
config AnalyzerConfig
metrics *AnalysisMetrics
mu sync.RWMutex
}
// AnalyzerConfig contains analyzer configuration
type AnalyzerConfig struct {
EnableTrendAnalysis bool
EnableAnomalyDetection bool
EnablePredictiveAnalysis bool
EnableRootCauseAnalysis bool
AnalysisInterval time.Duration
DataRetentionPeriod time.Duration
AlertingEnabled bool
ReportingEnabled bool
MinDataPoints int
ConfidenceThreshold float64
SensitivityLevel SensitivityLevel
}
// SensitivityLevel defines detection sensitivity
type SensitivityLevel int
const (
LowSensitivity SensitivityLevel = iota
MediumSensitivity
HighSensitivity
UltraHighSensitivity
)
// ProfileDataCollector collects profiling data from various sources
type ProfileDataCollector struct {
sources map[string]DataSource
storage DataStorage
preprocessor *DataPreprocessor
aggregator *DataAggregator
config CollectorConfig
stats *CollectionStatistics
mu sync.RWMutex
}
// CollectorConfig contains collector configuration
type CollectorConfig struct {
CollectionInterval time.Duration
BatchSize int
BufferSize int
CompressionEnabled bool
ValidationEnabled bool
DeduplicationEnabled bool
MaxRetries int
RetryBackoff time.Duration
}
// DataSource represents a profiling data source
type DataSource interface {
CollectData(ctx context.Context) ([]*ProfileData, error)
GetMetadata() DataSourceMetadata
GetHealth() HealthStatus
}
// ProfileData represents collected profiling data
type ProfileData struct {
Timestamp time.Time
Source string
Type ProfileType
Metrics map[string]float64
Samples []*ProfileSample
Metadata map[string]interface{}
Quality DataQuality
}
// ProfileType defines profile data types
type ProfileType int
const (
CPUProfile ProfileType = iota
MemoryProfile
GoroutineProfile
BlockProfile
MutexProfile
HeapProfile
AllocProfile
CustomProfile
)
// ProfileSample represents a single profiling sample
type ProfileSample struct {
Function string
File string
Line int
Value int64
Stack []string
Labels map[string]string
Weight float64
}
// DataQuality represents data quality metrics
type DataQuality struct {
Completeness float64
Accuracy float64
Consistency float64
Timeliness float64
Validity float64
OverallScore float64
}
// DataSourceMetadata contains metadata about data sources
type DataSourceMetadata struct {
Name string
Type string
Version string
Capabilities []string
SampleRate float64
Latency time.Duration
}
// HealthStatus represents health status
type HealthStatus struct {
Healthy bool
LastCheck time.Time
ErrorCount int
SuccessRate float64
Issues []HealthIssue
}
// HealthIssue represents a health issue
type HealthIssue struct {
Type string
Severity Severity
Description string
FirstSeen time.Time
LastSeen time.Time
Count int
}
// Severity defines issue severity levels
type Severity int
const (
InfoSeverity Severity = iota
WarningSeverity
ErrorSeverity
CriticalSeverity
)
// DataStorage manages persistent storage of profiling data
type DataStorage interface {
Store(data []*ProfileData) error
Retrieve(query StorageQuery) ([]*ProfileData, error)
Delete(criteria DeletionCriteria) error
GetStats() StorageStatistics
}
// StorageQuery represents a data retrieval query
type StorageQuery struct {
TimeRange TimeRange
Sources []string
Types []ProfileType
Filters map[string]interface{}
Aggregation AggregationSpec
Limit int
}
// TimeRange represents a time range
type TimeRange struct {
Start time.Time
End time.Time
}
// AggregationSpec specifies data aggregation
type AggregationSpec struct {
GroupBy []string
Functions []AggregationFunction
Interval time.Duration
}
// AggregationFunction defines aggregation functions
type AggregationFunction int
const (
SumFunction AggregationFunction = iota
AvgFunction
MinFunction
MaxFunction
CountFunction
PercentileFunction
StdDevFunction
)
// DeletionCriteria specifies deletion criteria
type DeletionCriteria struct {
OlderThan time.Time
Sources []string
Types []ProfileType
Conditions map[string]interface{}
}
// StorageStatistics tracks storage metrics
type StorageStatistics struct {
TotalRecords int64
TotalSize int64
OldestRecord time.Time
NewestRecord time.Time
CompressionRatio float64
QueryLatency time.Duration
}
// DataPreprocessor preprocesses raw profiling data
type DataPreprocessor struct {
normalizers []DataNormalizer
validators []DataValidator
enrichers []DataEnricher
config PreprocessorConfig
stats *PreprocessingStatistics
}
// PreprocessorConfig contains preprocessor configuration
type PreprocessorConfig struct {
EnableNormalization bool
EnableValidation bool
EnableEnrichment bool
ValidationRules []ValidationRule
NormalizationRules []NormalizationRule
EnrichmentRules []EnrichmentRule
}
// DataNormalizer normalizes data values
type DataNormalizer interface {
Normalize(data *ProfileData) error
GetType() NormalizationType
}
// NormalizationType defines normalization types
type NormalizationType int
const (
UnitNormalization NormalizationType = iota
ScaleNormalization
TimeNormalization
ValueNormalization
)
// DataValidator validates data integrity
type DataValidator interface {
Validate(data *ProfileData) ValidationResult
GetRules() []ValidationRule
}
// ValidationResult contains validation results
type ValidationResult struct {
Valid bool
Score float64
Issues []ValidationIssue
Warnings []string
}
// ValidationIssue represents a validation issue
type ValidationIssue struct {
Type string
Severity Severity
Field string
Description string
Suggestion string
}
// ValidationRule defines validation rules
type ValidationRule struct {
Name string
Type ValidationType
Parameters map[string]interface{}
Severity Severity
Enabled bool
}
// ValidationType defines validation types
type ValidationType int
const (
RangeValidation ValidationType = iota
FormatValidation
ConsistencyValidation
CompletenessValidation
TimelinessValidation
)
// DataEnricher enriches data with additional context
type DataEnricher interface {
Enrich(data *ProfileData) error
GetType() EnrichmentType
}
// EnrichmentType defines enrichment types
type EnrichmentType int
const (
MetadataEnrichment EnrichmentType = iota
ContextEnrichment
ReferenceEnrichment
CalculatedEnrichment
)
// TrendAnalyzer analyzes performance trends
type TrendAnalyzer struct {
analyzers map[string]TrendAnalysisEngine
models map[string]*TrendModel
config TrendAnalysisConfig
cache *TrendCache
stats *TrendAnalysisStatistics
mu sync.RWMutex
}
// TrendAnalysisConfig contains trend analysis configuration
type TrendAnalysisConfig struct {
WindowSize time.Duration
UpdateInterval time.Duration
MinDataPoints int
TrendThreshold float64
SeasonalityEnabled bool
ForecastHorizon time.Duration
ConfidenceLevel float64
}
// TrendAnalysisEngine performs trend analysis
type TrendAnalysisEngine interface {
AnalyzeTrend(data []*ProfileData) (*TrendResult, error)
GetType() TrendAnalysisType
GetAccuracy() float64
}
// TrendAnalysisType defines analysis types
type TrendAnalysisType int
const (
LinearTrend TrendAnalysisType = iota
ExponentialTrend
SeasonalTrend
CyclicalTrend
PolynomialTrend
MovingAverageTrend
)
// TrendResult contains trend analysis results
type TrendResult struct {
Type TrendType
Direction TrendDirection
Strength float64
Confidence float64
StartTime time.Time
EndTime time.Time
Parameters map[string]float64
Forecast *TrendForecast
Seasonality *SeasonalityInfo
ChangePoints []ChangePoint
}
// TrendType defines trend types
type TrendType int
const (
NoTrend TrendType = iota
UpwardTrend
DownwardTrend
StableTrend
VolatileTrend
)
// TrendDirection defines trend directions
type TrendDirection int
const (
Increasing TrendDirection = iota
Decreasing
Stable
Volatile
)
// TrendForecast contains forecast information
type TrendForecast struct {
Values []float64
Timestamps []time.Time
UpperBound []float64
LowerBound []float64
Confidence float64
Method ForecastMethod
}
// ForecastMethod defines forecasting methods
type ForecastMethod int
const (
LinearRegression ForecastMethod = iota
ExponentialSmoothing
ARIMA
NeuralNetwork
EnsembleMethod
)
// SeasonalityInfo contains seasonality information
type SeasonalityInfo struct {
Present bool
Period time.Duration
Amplitude float64
Phase float64
Patterns []SeasonalPattern
}
// SeasonalPattern represents a seasonal pattern
type SeasonalPattern struct {
Name string
Period time.Duration
Strength float64
Phase float64
Frequency float64
}
// ChangePoint represents a significant change in trend
type ChangePoint struct {
Timestamp time.Time
Type ChangeType
Magnitude float64
Confidence float64
Description string
Cause string
}
// ChangeType defines change point types
type ChangeType int
const (
LevelChange ChangeType = iota
TrendChange
VarianceChange
SeasonalChange
)
// TrendModel represents a statistical trend model
type TrendModel struct {
Type ModelType
Parameters map[string]float64
Accuracy ModelAccuracy
Training TrainingInfo
Validation ValidationInfo
LastUpdated time.Time
}
// ModelType defines model types
type ModelType int
const (
LinearModel ModelType = iota
PolynomialModel
ExponentialModel
LogisticModel
TimeSeriesModel
EnsembleModel
)
// ModelAccuracy contains model accuracy metrics
type ModelAccuracy struct {
MAE float64 // Mean Absolute Error
MAPE float64 // Mean Absolute Percentage Error
RMSE float64 // Root Mean Square Error
R2 float64 // R-squared
AIC float64 // Akaike Information Criterion
Confidence float64
}
// TrainingInfo contains model training information
type TrainingInfo struct {
DataPoints int
TrainingTime time.Duration
Iterations int
Convergence bool
CrossValidated bool
Features []string
}
// ValidationInfo contains model validation information
type ValidationInfo struct {
TestDataPoints int
ValidationTime time.Duration
Accuracy float64
Overfitting bool
Underfitting bool
Recommendations []string
}
// AnomalyDetector detects performance anomalies
type AnomalyDetector struct {
detectors map[string]AnomalyDetectionEngine
config AnomalyDetectionConfig
baseline *PerformanceBaseline
alerter *AnomalyAlerter
stats *AnomalyDetectionStatistics
mu sync.RWMutex
}
// AnomalyDetectionConfig contains detection configuration
type AnomalyDetectionConfig struct {
EnableStatisticalDetection bool
EnableMLDetection bool
EnableRuleBasedDetection bool
SensitivityLevel SensitivityLevel
FalsePositiveThreshold float64
MinAnomalyDuration time.Duration
BaselineUpdateInterval time.Duration
AdaptiveLearning bool
}
// AnomalyDetectionEngine performs anomaly detection
type AnomalyDetectionEngine interface {
DetectAnomalies(data []*ProfileData, baseline *PerformanceBaseline) ([]*Anomaly, error)
GetType() DetectionType
GetAccuracy() DetectionAccuracy
UpdateModel(data []*ProfileData) error
}
// DetectionType defines detection algorithm types
type DetectionType int
const (
StatisticalDetection DetectionType = iota
MachineLearningDetection
RuleBasedDetection
ThresholdBasedDetection
PatternBasedDetection
EnsembleDetection
)
// DetectionAccuracy contains detection accuracy metrics
type DetectionAccuracy struct {
Precision float64
Recall float64
F1Score float64
Specificity float64
AUC float64
Confusion ConfusionMatrix
}
// ConfusionMatrix represents a confusion matrix
type ConfusionMatrix struct {
TruePositives int
TrueNegatives int
FalsePositives int
FalseNegatives int
}
// Anomaly represents a detected anomaly
type Anomaly struct {
ID string
Type AnomalyType
Severity AnomalySeverity
Timestamp time.Time
Duration time.Duration
Metric string
Value float64
Expected float64
Deviation float64
Confidence float64
Context AnomalyContext
RootCause *RootCause
Impact AnomalyImpact
Resolution *Resolution
}
// AnomalyType defines anomaly types
type AnomalyType int
const (
SpikeAnomaly AnomalyType = iota
DipAnomaly
TrendAnomaly
SeasonalAnomaly
PatternAnomaly
CorrelationAnomaly
)
// AnomalySeverity defines anomaly severity levels
type AnomalySeverity int
const (
LowAnomalySeverity AnomalySeverity = iota
MediumAnomalySeverity
HighAnomalySeverity
CriticalAnomalySeverity
)
// AnomalyContext provides context for anomalies
type AnomalyContext struct {
Application string
Environment string
Version string
Host string
Service string
Component string
Tags map[string]string
Correlations []Correlation
}
// Correlation represents correlations with other metrics
type Correlation struct {
Metric string
Coefficient float64
Lag time.Duration
Strength CorrelationStrength
}
// CorrelationStrength defines correlation strength levels
type CorrelationStrength int
const (
WeakCorrelation CorrelationStrength = iota
ModerateCorrelation
StrongCorrelation
VeryStrongCorrelation
)
// RootCause represents the root cause of an anomaly
type RootCause struct {
Category RootCauseCategory
Description string
Confidence float64
Evidence []Evidence
Hypothesis string
Verification *Verification
}
// RootCauseCategory defines root cause categories
type RootCauseCategory int
const (
CodeChange RootCauseCategory = iota
ConfigChange
InfrastructureChange
DataChange
ExternalDependency
ResourceExhaustion
Unknown
)
// Evidence represents evidence supporting a root cause
type Evidence struct {
Type EvidenceType
Description string
Weight float64
Source string
Timestamp time.Time
Data interface{}
}
// EvidenceType defines evidence types
type EvidenceType int
const (
MetricEvidence EvidenceType = iota
LogEvidence
TraceEvidence
EventEvidence
CorrelationEvidence
)
// Verification contains root cause verification information
type Verification struct {
Method VerificationMethod
Confidence float64
Status VerificationStatus
Results map[string]interface{}
Timestamp time.Time
}
// VerificationMethod defines verification methods
type VerificationMethod int
const (
StatisticalVerification VerificationMethod = iota
ExperimentalVerification
CorrelationVerification
ExpertVerification
)
// VerificationStatus defines verification status
type VerificationStatus int
const (
Pending VerificationStatus = iota
Verified
Rejected
Inconclusive
)
// AnomalyImpact represents the impact of an anomaly
type AnomalyImpact struct {
Scope ImpactScope
Magnitude float64
Duration time.Duration
Metrics map[string]float64
Users int
Services []string
Business BusinessImpact
}
// ImpactScope defines impact scope
type ImpactScope int
const (
LocalImpact ImpactScope = iota
ServiceImpact
SystemImpact
GlobalImpact
)
// BusinessImpact represents business impact
type BusinessImpact struct {
Revenue float64
Users int
SLA SLAImpact
Reputation ReputationImpact
Operational OperationalImpact
}
// SLAImpact represents SLA impact
type SLAImpact struct {
Violated bool
Metrics map[string]float64
Penalties float64
Credits float64
}
// ReputationImpact represents reputation impact
type ReputationImpact struct {
Score float64
Mentions int
Sentiment float64
Escalations int
}
// OperationalImpact represents operational impact
type OperationalImpact struct {
Incidents int
Escalations int
Resources float64
Downtime time.Duration
}
// Resolution represents anomaly resolution information
type Resolution struct {
Status ResolutionStatus
Actions []ResolutionAction
Results ResolutionResults
Timeline ResolutionTimeline
Automation AutomationInfo
}
// ResolutionStatus defines resolution status
type ResolutionStatus int
const (
UnresolvedStatus ResolutionStatus = iota
InProgressStatus
ResolvedStatus
IgnoredStatus
)
// ResolutionAction represents a resolution action
type ResolutionAction struct {
Type ActionType
Description string
Automated bool
Results ActionResults
Timestamp time.Time
Actor string
}
// ActionType defines action types
type ActionType int
const (
Investigation ActionType = iota
Mitigation
Remediation
Prevention
Monitoring
)
// ActionResults contains action results
type ActionResults struct {
Success bool
Impact float64
Duration time.Duration
SideEffects []string
Metrics map[string]float64
}
// ResolutionResults contains overall resolution results
type ResolutionResults struct {
Effectiveness float64
Duration time.Duration
Cost float64
Prevention bool
Lessons []string
}
// ResolutionTimeline tracks resolution timeline
type ResolutionTimeline struct {
Detection time.Time
Investigation time.Time
Mitigation time.Time
Resolution time.Time
Verification time.Time
}
// AutomationInfo contains automation information
type AutomationInfo struct {
Triggered bool
Actions []string
Success bool
Confidence float64
Override bool
}
// PerformanceBaseline represents performance baselines
type PerformanceBaseline struct {
metrics map[string]*MetricBaseline
timeRange TimeRange
confidence float64
quality BaselineQuality
lastUpdated time.Time
mu sync.RWMutex
}
// MetricBaseline contains baseline for a specific metric
type MetricBaseline struct {
Name string
Mean float64
StdDev float64
Percentiles map[int]float64
Range ValueRange
Seasonality *SeasonalBaseline
Trend *TrendBaseline
}
// ValueRange represents a value range
type ValueRange struct {
Min float64
Max float64
}
// SeasonalBaseline contains seasonal baseline information
type SeasonalBaseline struct {
Patterns map[string]*SeasonalPattern
Enabled bool
Accuracy float64
}
// TrendBaseline contains trend baseline information
type TrendBaseline struct {
Direction TrendDirection
Rate float64
Stability float64
Enabled bool
}
// BaselineQuality represents baseline quality metrics
type BaselineQuality struct {
DataPoints int
Completeness float64
Stability float64
Accuracy float64
Freshness float64
OverallScore float64
}
// NewAutomatedAnalyzer creates a new automated analyzer
func NewAutomatedAnalyzer(config AnalyzerConfig) *AutomatedAnalyzer {
return &AutomatedAnalyzer{
dataCollector: NewProfileDataCollector(),
trendAnalyzer: NewTrendAnalyzer(),
anomalyDetector: NewAnomalyDetector(),
alertManager: NewAlertManager(),
rcaEngine: NewRootCauseAnalyzer(),
predictor: NewPerformancePredictor(),
reportGenerator: NewReportGenerator(),
config: config,
metrics: &AnalysisMetrics{},
}
}
// Start starts the automated analysis process
func (aa *AutomatedAnalyzer) Start(ctx context.Context) error {
aa.mu.Lock()
defer aa.mu.Unlock()
// Start data collection
if err := aa.dataCollector.Start(ctx); err != nil {
return fmt.Errorf("failed to start data collector: %w", err)
}
// Start analysis loops
go aa.analysisLoop(ctx)
go aa.alertingLoop(ctx)
go aa.reportingLoop(ctx)
return nil
}
// analysisLoop performs periodic analysis
func (aa *AutomatedAnalyzer) analysisLoop(ctx context.Context) {
ticker := time.NewTicker(aa.config.AnalysisInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
aa.performAnalysis(ctx)
}
}
}
// performAnalysis performs comprehensive analysis
func (aa *AutomatedAnalyzer) performAnalysis(ctx context.Context) {
// Collect recent data
query := StorageQuery{
TimeRange: TimeRange{
Start: time.Now().Add(-aa.config.AnalysisInterval),
End: time.Now(),
},
}
data, err := aa.dataCollector.QueryData(query)
if err != nil {
return
}
if len(data) < aa.config.MinDataPoints {
return
}
// Perform trend analysis
if aa.config.EnableTrendAnalysis {
trendResults := aa.trendAnalyzer.AnalyzeAll(data)
aa.processTrendResults(trendResults)
}
// Perform anomaly detection
if aa.config.EnableAnomalyDetection {
baseline := aa.getOrCreateBaseline(data)
anomalies := aa.anomalyDetector.DetectAll(data, baseline)
aa.processAnomalies(ctx, anomalies)
}
// Perform predictive analysis
if aa.config.EnablePredictiveAnalysis {
predictions := aa.predictor.GeneratePredictions(data)
aa.processPredictions(predictions)
}
}
// processTrendResults processes trend analysis results
func (aa *AutomatedAnalyzer) processTrendResults(results map[string]*TrendResult) {
for metric, result := range results {
// Check for significant trends
if result.Strength > 0.7 && result.Confidence > aa.config.ConfidenceThreshold {
event := &AnalysisEvent{
Type: TrendEvent,
Metric: metric,
Severity: aa.calculateTrendSeverity(result),
Result: result,
Timestamp: time.Now(),
}
aa.alertManager.ProcessEvent(event)
}
}
}
// processAnomalies processes detected anomalies
func (aa *AutomatedAnalyzer) processAnomalies(ctx context.Context, anomalies []*Anomaly) {
for _, anomaly := range anomalies {
// Perform root cause analysis if enabled
if aa.config.EnableRootCauseAnalysis {
rootCause, err := aa.rcaEngine.AnalyzeAnomaly(ctx, anomaly)
if err == nil {
anomaly.RootCause = rootCause
}
}
// Send alert
alert := &Alert{
Type: AnomalyAlert,
Severity: anomaly.Severity,
Anomaly: anomaly,
Timestamp: time.Now(),
}
aa.alertManager.SendAlert(alert)
}
}
// calculateTrendSeverity calculates trend severity
func (aa *AutomatedAnalyzer) calculateTrendSeverity(result *TrendResult) AnomalySeverity {
// Calculate severity based on trend strength and direction
severity := LowAnomalySeverity
if result.Strength > 0.9 {
severity = CriticalAnomalySeverity
} else if result.Strength > 0.8 {
severity = HighAnomalySeverity
} else if result.Strength > 0.7 {
severity = MediumAnomalySeverity
}
return severity
}
// Component implementations and placeholder types
type AnalysisMetrics struct{}
type ProfileDataCollector struct{}
type TrendAnalyzer struct{}
type AnomalyDetector struct{}
type AlertManager struct{}
type RootCauseAnalyzer struct{}
type PerformancePredictor struct{}
type ReportGenerator struct{}
type AnomalyAlerter struct{}
type TrendCache struct{}
type CollectionStatistics struct{}
type TrendAnalysisStatistics struct{}
type AnomalyDetectionStatistics struct{}
type DataAggregator struct{}
type PreprocessingStatistics struct{}
type NormalizationRule struct{}
type EnrichmentRule struct{}
// Analysis event types
type AnalysisEvent struct {
Type EventType
Metric string
Severity AnomalySeverity
Result interface{}
Timestamp time.Time
}
type EventType int
const (
TrendEvent EventType = iota
AnomalyEvent
PredictionEvent
)
type Alert struct {
Type AlertType
Severity AnomalySeverity
Anomaly *Anomaly
Timestamp time.Time
}
type AlertType int
const (
AnomalyAlert AlertType = iota
TrendAlert
PredictionAlert
)
// Constructor functions
func NewProfileDataCollector() *ProfileDataCollector { return &ProfileDataCollector{} }
func NewTrendAnalyzer() *TrendAnalyzer { return &TrendAnalyzer{} }
func NewAnomalyDetector() *AnomalyDetector { return &AnomalyDetector{} }
func NewAlertManager() *AlertManager { return &AlertManager{} }
func NewRootCauseAnalyzer() *RootCauseAnalyzer { return &RootCauseAnalyzer{} }
func NewPerformancePredictor() *PerformancePredictor { return &PerformancePredictor{} }
func NewReportGenerator() *ReportGenerator { return &ReportGenerator{} }
// Method implementations
func (pdc *ProfileDataCollector) Start(ctx context.Context) error { return nil }
func (pdc *ProfileDataCollector) QueryData(query StorageQuery) ([]*ProfileData, error) { return nil, nil }
func (ta *TrendAnalyzer) AnalyzeAll(data []*ProfileData) map[string]*TrendResult { return nil }
func (ad *AnomalyDetector) DetectAll(data []*ProfileData, baseline *PerformanceBaseline) []*Anomaly { return nil }
func (pp *PerformancePredictor) GeneratePredictions(data []*ProfileData) interface{} { return nil }
func (aa *AutomatedAnalyzer) getOrCreateBaseline(data []*ProfileData) *PerformanceBaseline { return nil }
func (aa *AutomatedAnalyzer) processPredictions(predictions interface{}) {}
func (rca *RootCauseAnalyzer) AnalyzeAnomaly(ctx context.Context, anomaly *Anomaly) (*RootCause, error) { return nil, nil }
func (am *AlertManager) ProcessEvent(event *AnalysisEvent) {}
func (am *AlertManager) SendAlert(alert *Alert) {}
// Additional methods for complete interface
func (aa *AutomatedAnalyzer) alertingLoop(ctx context.Context) {
// Implementation for alerting loop
}
func (aa *AutomatedAnalyzer) reportingLoop(ctx context.Context) {
// Implementation for reporting loop
}
// Example usage
func ExampleAutomatedAnalysis() {
// Create analyzer configuration
config := AnalyzerConfig{
EnableTrendAnalysis: true,
EnableAnomalyDetection: true,
EnablePredictiveAnalysis: true,
EnableRootCauseAnalysis: true,
AnalysisInterval: time.Minute,
DataRetentionPeriod: 24 * time.Hour,
AlertingEnabled: true,
ReportingEnabled: true,
MinDataPoints: 10,
ConfidenceThreshold: 0.8,
SensitivityLevel: MediumSensitivity,
}
// Create analyzer
analyzer := NewAutomatedAnalyzer(config)
// Start analysis
ctx := context.Background()
if err := analyzer.Start(ctx); err != nil {
fmt.Printf("Failed to start analyzer: %v\n", err)
return
}
fmt.Println("Automated analysis started successfully")
fmt.Printf("Analysis interval: %v\n", config.AnalysisInterval)
fmt.Printf("Confidence threshold: %.2f\n", config.ConfidenceThreshold)
fmt.Printf("Features enabled: trend=%t, anomaly=%t, prediction=%t, rca=%t\n",
config.EnableTrendAnalysis,
config.EnableAnomalyDetection,
config.EnablePredictiveAnalysis,
config.EnableRootCauseAnalysis)
// Simulate running for some time
time.Sleep(5 * time.Second)
fmt.Println("Analysis completed")
}
Performance Trend Analysis
Advanced techniques for analyzing performance trends and identifying patterns in profiling data.
Statistical Trend Analysis
Using statistical methods to identify significant trends in performance metrics.
Seasonal Pattern Detection
Detecting and modeling seasonal patterns in application performance.
Change Point Detection
Identifying significant changes in performance characteristics.
Anomaly Detection
Sophisticated anomaly detection algorithms for identifying performance issues.
Statistical Anomaly Detection
Using statistical methods for robust anomaly detection.
Machine Learning Detection
Implementing ML-based anomaly detection for complex patterns.
Ensemble Detection
Combining multiple detection methods for improved accuracy.
Root Cause Analysis
Automated root cause analysis for performance anomalies.
Correlation Analysis
Analyzing correlations between different metrics and events.
Causal Inference
Using causal inference techniques to identify root causes.
Evidence Collection
Systematic collection and analysis of evidence for root cause determination.
Best Practices
- Data Quality: Ensure high-quality profiling data for accurate analysis
- Baseline Management: Maintain accurate and up-to-date performance baselines
- Alert Tuning: Carefully tune alert thresholds to minimize false positives
- Model Validation: Regularly validate and update analysis models
- Automation: Automate routine analysis tasks while maintaining human oversight
- Documentation: Document analysis results and decisions for future reference
- Continuous Improvement: Continuously improve analysis algorithms based on feedback
- Integration: Integrate with existing monitoring and alerting systems
Summary
Automated analysis transforms continuous profiling into an intelligent system:
- Trend Analysis: Automatically identify and analyze performance trends
- Anomaly Detection: Detect performance anomalies with high accuracy
- Root Cause Analysis: Automatically identify likely root causes
- Predictive Analytics: Predict future performance issues
- Intelligent Alerting: Generate actionable alerts with context
These techniques enable organizations to proactively manage application performance and quickly resolve issues before they impact users.