Performance Engineering Best Practices

This section establishes comprehensive best practices for Go performance engineering, covering development workflows, testing strategies, deployment patterns, and organizational culture to ensure sustained high performance throughout the application lifecycle.

Development Workflow Integration

Integrating performance considerations into the development workflow ensures that performance is treated as a first-class concern rather than an afterthought, preventing performance regressions and maintaining optimal system behavior.

Performance-Driven Development Process

1. Performance Requirements Definition

Establish clear, measurable performance requirements before development begins:

// Performance requirements specification
type PerformanceRequirements struct {
    // Latency requirements
    MaxResponseTime      time.Duration `yaml:"max_response_time"`      // 100ms
    P95ResponseTime      time.Duration `yaml:"p95_response_time"`      // 250ms
    P99ResponseTime      time.Duration `yaml:"p99_response_time"`      // 500ms

    // Throughput requirements  
    MinThroughputRPS     int64         `yaml:"min_throughput_rps"`     // 1000
    MaxThroughputRPS     int64         `yaml:"max_throughput_rps"`     // 10000

    // Resource constraints
    MaxMemoryUsage       int64         `yaml:"max_memory_usage"`       // 2GB
    MaxCPUUsage          float64       `yaml:"max_cpu_usage"`          // 80%
    MaxGoroutines        int           `yaml:"max_goroutines"`         // 1000

    // Scalability requirements
    MaxConcurrentUsers   int           `yaml:"max_concurrent_users"`   // 5000
    HorizontalScaling    bool          `yaml:"horizontal_scaling"`     // true

    // Availability requirements
    MaxDowntime          time.Duration `yaml:"max_downtime"`           // 1h/month
    RecoveryTime         time.Duration `yaml:"recovery_time"`          // 5min
}

// Performance SLA validation
func (pr *PerformanceRequirements) ValidateMetrics(metrics *SystemMetrics) error {
    var violations []string

    if metrics.ResponseTimeP95 > pr.P95ResponseTime {
        violations = append(violations, 
            fmt.Sprintf("P95 response time %v exceeds limit %v", 
                       metrics.ResponseTimeP95, pr.P95ResponseTime))
    }

    if metrics.ThroughputRPS < pr.MinThroughputRPS {
        violations = append(violations,
            fmt.Sprintf("Throughput %d RPS below minimum %d RPS",
                       metrics.ThroughputRPS, pr.MinThroughputRPS))
    }

    if metrics.MemoryUsage > pr.MaxMemoryUsage {
        violations = append(violations,
            fmt.Sprintf("Memory usage %d exceeds limit %d",
                       metrics.MemoryUsage, pr.MaxMemoryUsage))
    }

    if len(violations) > 0 {
        return fmt.Errorf("Performance SLA violations: %s", 
                         strings.Join(violations, "; "))
    }

    return nil
}

2. Continuous Performance Testing

Implement automated performance testing throughout the development pipeline:

// Continuous performance testing framework
type PerformanceTestSuite struct {
    benchmarks    []BenchmarkTest
    loadTests     []LoadTest
    stressTests   []StressTest
    regressionTests []RegressionTest
    baseline      *PerformanceBaseline
}

type BenchmarkTest struct {
    Name           string
    Function       func(b *testing.B)
    Requirements   BenchmarkRequirements
    Tags           []string
}

type BenchmarkRequirements struct {
    MaxNsPerOp     int64   `yaml:"max_ns_per_op"`
    MaxAllocsPerOp int64   `yaml:"max_allocs_per_op"`
    MaxBytesPerOp  int64   `yaml:"max_bytes_per_op"`
    MinOpsPerSec   float64 `yaml:"min_ops_per_sec"`
}

type LoadTest struct {
    Name         string
    Scenario     string
    VirtualUsers int
    Duration     time.Duration
    RampUp       time.Duration
    Expectations LoadTestExpectations
}

type LoadTestExpectations struct {
    MaxLatencyP95   time.Duration `yaml:"max_latency_p95"`
    MinThroughput   float64       `yaml:"min_throughput"`
    MaxErrorRate    float64       `yaml:"max_error_rate"`
    MaxMemoryGrowth float64       `yaml:"max_memory_growth"`
}

// Automated benchmark execution with regression detection
func (pts *PerformanceTestSuite) RunBenchmarks() (*BenchmarkResults, error) {
    var results BenchmarkResults

    for _, benchmark := range pts.benchmarks {
        fmt.Printf("Running benchmark: %s\n", benchmark.Name)

        // Run benchmark multiple times for statistical significance
        var runs []BenchmarkRun
        for i := 0; i < 5; i++ {
            run := pts.executeBenchmark(benchmark)
            runs = append(runs, run)
        }

        // Calculate statistics
        stats := pts.calculateBenchmarkStats(runs)

        // Check against requirements
        if err := pts.validateBenchmarkResults(benchmark.Requirements, stats); err != nil {
            return nil, fmt.Errorf("benchmark %s failed: %v", benchmark.Name, err)
        }

        // Check for regression
        if pts.baseline != nil {
            if regression := pts.detectRegression(benchmark.Name, stats); regression != nil {
                return nil, fmt.Errorf("performance regression detected in %s: %s", 
                                     benchmark.Name, regression.Description)
            }
        }

        results.Benchmarks = append(results.Benchmarks, BenchmarkResult{
            Name:  benchmark.Name,
            Stats: stats,
        })
    }

    return &results, nil
}

func (pts *PerformanceTestSuite) executeBenchmark(benchmark BenchmarkTest) BenchmarkRun {
    // Capture system state before benchmark
    beforeStats := pts.captureSystemStats()

    // Run the actual benchmark
    result := testing.Benchmark(benchmark.Function)

    // Capture system state after benchmark
    afterStats := pts.captureSystemStats()

    return BenchmarkRun{
        NsPerOp:    result.NsPerOp(),
        AllocsPerOp: result.AllocsPerOp(),
        BytesPerOp: result.BytesPerOp(),
        SystemStats: SystemStatsDiff{
            Before: beforeStats,
            After:  afterStats,
        },
    }
}

// Performance regression detection
type RegressionDetector struct {
    thresholds    RegressionThresholds
    history       *PerformanceHistory
    statistical   *StatisticalAnalyzer
}

type RegressionThresholds struct {
    LatencyIncrease    float64 `yaml:"latency_increase"`     // 20%
    ThroughputDecrease float64 `yaml:"throughput_decrease"`  // 15%  
    MemoryIncrease     float64 `yaml:"memory_increase"`      // 25%
    AllocIncrease      float64 `yaml:"alloc_increase"`       // 30%
}

func (rd *RegressionDetector) DetectRegression(current, baseline *PerformanceMetrics) *Regression {
    regressions := []RegressionIssue{}

    // Latency regression
    if latencyIncrease := (current.LatencyP95 - baseline.LatencyP95) / baseline.LatencyP95; 
       latencyIncrease > rd.thresholds.LatencyIncrease {
        regressions = append(regressions, RegressionIssue{
            Type:        "latency",
            Metric:      "p95_response_time",
            Current:     current.LatencyP95,
            Baseline:    baseline.LatencyP95,
            ChangePercent: latencyIncrease * 100,
            Severity:    rd.calculateSeverity(latencyIncrease, rd.thresholds.LatencyIncrease),
        })
    }

    // Throughput regression
    if throughputDecrease := (baseline.ThroughputRPS - current.ThroughputRPS) / baseline.ThroughputRPS;
       throughputDecrease > rd.thresholds.ThroughputDecrease {
        regressions = append(regressions, RegressionIssue{
            Type:         "throughput",
            Metric:       "requests_per_second",
            Current:      current.ThroughputRPS,
            Baseline:     baseline.ThroughputRPS,
            ChangePercent: -throughputDecrease * 100,
            Severity:     rd.calculateSeverity(throughputDecrease, rd.thresholds.ThroughputDecrease),
        })
    }

    // Memory regression
    if memoryIncrease := (current.MemoryUsage - baseline.MemoryUsage) / baseline.MemoryUsage;
       memoryIncrease > rd.thresholds.MemoryIncrease {
        regressions = append(regressions, RegressionIssue{
            Type:         "memory",
            Metric:       "memory_usage",
            Current:      current.MemoryUsage,
            Baseline:     baseline.MemoryUsage,
            ChangePercent: memoryIncrease * 100,
            Severity:     rd.calculateSeverity(memoryIncrease, rd.thresholds.MemoryIncrease),
        })
    }

    if len(regressions) > 0 {
        return &Regression{
            DetectedAt: time.Now(),
            Issues:     regressions,
            Severity:   rd.calculateOverallSeverity(regressions),
        }
    }

    return nil
}

3. Performance-Aware Code Review Process

Establish code review practices that emphasize performance considerations:

// Performance code review checklist
type PerformanceReviewChecklist struct {
    Items []ReviewItem
}

type ReviewItem struct {
    Category    string
    Description string
    CheckFunc   func(ast.Node) []ReviewFinding
    Severity    ReviewSeverity
}

type ReviewSeverity int

const (
    Info ReviewSeverity = iota
    Warning
    Error
    Critical
)

func NewPerformanceReviewChecklist() *PerformanceReviewChecklist {
    return &PerformanceReviewChecklist{
        Items: []ReviewItem{
            {
                Category:    "Memory Allocation",
                Description: "Check for unnecessary allocations in hot paths",
                CheckFunc:   checkUnnecessaryAllocations,
                Severity:    Warning,
            },
            {
                Category:    "Goroutine Management", 
                Description: "Verify proper goroutine lifecycle management",
                CheckFunc:   checkGoroutineLeaks,
                Severity:    Error,
            },
            {
                Category:    "Database Queries",
                Description: "Ensure efficient database query patterns",
                CheckFunc:   checkDatabasePatterns,
                Severity:    Warning,
            },
            {
                Category:    "String Operations",
                Description: "Identify inefficient string operations",
                CheckFunc:   checkStringOperations,
                Severity:    Info,
            },
            {
                Category:    "JSON Processing",
                Description: "Verify efficient JSON marshaling/unmarshaling",
                CheckFunc:   checkJSONProcessing,
                Severity:    Warning,
            },
        },
    }
}

// Automated code analysis for performance issues
func checkUnnecessaryAllocations(node ast.Node) []ReviewFinding {
    var findings []ReviewFinding

    ast.Inspect(node, func(n ast.Node) bool {
        switch stmt := n.(type) {
        case *ast.RangeStmt:
            // Check for slice growth in loops
            if isSliceAppendInLoop(stmt) {
                findings = append(findings, ReviewFinding{
                    Type:        "allocation",
                    Message:     "Consider pre-allocating slice with known capacity",
                    Suggestion:  "Use make([]Type, 0, capacity) before the loop",
                    Line:        stmt.Pos(),
                    Severity:    Warning,
                })
            }

        case *ast.CallExpr:
            // Check for repeated string concatenation
            if isStringConcatenation(stmt) {
                findings = append(findings, ReviewFinding{
                    Type:        "allocation",
                    Message:     "String concatenation in loop creates multiple allocations",
                    Suggestion:  "Use strings.Builder for efficient string building",
                    Line:        stmt.Pos(),
                    Severity:    Warning,
                })
            }
        }
        return true
    })

    return findings
}

func checkGoroutineLeaks(node ast.Node) []ReviewFinding {
    var findings []ReviewFinding

    ast.Inspect(node, func(n ast.Node) bool {
        if goStmt, ok := n.(*ast.GoStmt); ok {
            // Check if goroutine has proper cleanup mechanism
            if !hasGoroutineCleanup(goStmt) {
                findings = append(findings, ReviewFinding{
                    Type:        "goroutine",
                    Message:     "Goroutine may leak without proper cleanup mechanism",
                    Suggestion:  "Add context cancellation or done channel",
                    Line:        goStmt.Pos(),
                    Severity:    Error,
                })
            }
        }
        return true
    })

    return findings
}

// Performance-focused pull request template
const performancePRTemplate = `
## Performance Impact Assessment

### Performance Requirements
- [ ] Latency requirements defined and validated
- [ ] Throughput requirements specified  
- [ ] Memory usage constraints documented
- [ ] Scalability impact assessed

### Performance Testing
- [ ] Benchmarks added for new/modified code
- [ ] Load testing completed for API changes
- [ ] Memory profiling shows no leaks
- [ ] CPU profiling indicates acceptable overhead

### Code Review Checklist
- [ ] No unnecessary allocations in hot paths
- [ ] Proper goroutine lifecycle management
- [ ] Efficient data structure usage
- [ ] Database query optimization applied
- [ ] Caching strategy implemented where appropriate

### Performance Metrics
**Before Changes:**
- Latency P95: ___ ms
- Throughput: ___ RPS  
- Memory Usage: ___ MB
- CPU Usage: ___ %

**After Changes:**
- Latency P95: ___ ms (Δ: ___ %)
- Throughput: ___ RPS (Δ: ___ %)
- Memory Usage: ___ MB (Δ: ___ %)
- CPU Usage: ___ % (Δ: ___ %)

### Regression Risk Assessment
- [ ] Low risk - cosmetic changes only
- [ ] Medium risk - algorithm modifications  
- [ ] High risk - core performance path changes
- [ ] Critical risk - fundamental architecture changes

### Monitoring and Rollback Plan
- [ ] Performance monitoring alerts configured
- [ ] Rollback plan documented and tested
- [ ] Gradual rollout strategy defined
- [ ] Success criteria established
`

Testing and Validation Strategies

Comprehensive testing strategies ensure that performance requirements are met and maintained throughout the application lifecycle.

Performance Testing Framework

1. Multi-Level Testing Strategy

// Comprehensive performance testing framework
type PerformanceTestFramework struct {
    unitTests       *UnitPerformanceTests
    integrationTests *IntegrationPerformanceTests
    systemTests     *SystemPerformanceTests
    chaosTests      *ChaosPerformanceTests
    scheduler       *TestScheduler
    reporter        *PerformanceReporter
}

type UnitPerformanceTests struct {
    benchmarks map[string]*BenchmarkSuite
    profilers  map[string]*Profiler
    validators map[string]*PerformanceValidator
}

// Unit-level performance testing
func (upt *UnitPerformanceTests) TestFunctionPerformance(funcName string, testData []TestCase) (*UnitTestResults, error) {
    var results UnitTestResults

    for _, testCase := range testData {
        // Run benchmark
        benchResult := upt.runBenchmark(funcName, testCase)

        // Profile memory usage
        memProfile := upt.profileMemory(funcName, testCase)

        // Profile CPU usage
        cpuProfile := upt.profileCPU(funcName, testCase)

        // Validate against requirements
        validation := upt.validatePerformance(benchResult, memProfile, cpuProfile)

        results.Cases = append(results.Cases, UnitTestResult{
            TestCase:     testCase,
            Benchmark:    benchResult,
            MemoryProfile: memProfile,
            CPUProfile:   cpuProfile,
            Validation:   validation,
        })

        if !validation.Passed {
            return &results, fmt.Errorf("performance validation failed for %s: %v", 
                                      funcName, validation.Errors)
        }
    }

    return &results, nil
}

// Integration-level performance testing
type IntegrationPerformanceTests struct {
    scenarios []IntegrationScenario
    monitors  []PerformanceMonitor
    harness   *TestHarness
}

type IntegrationScenario struct {
    Name         string
    Description  string
    Components   []string
    TestScript   func(*TestContext) error
    Requirements IntegrationRequirements
}

type IntegrationRequirements struct {
    MaxEndToEndLatency   time.Duration
    MinThroughput        float64
    MaxMemoryFootprint   int64
    MaxDatabaseConnections int
    MaxGoroutines        int
}

func (ipt *IntegrationPerformanceTests) RunScenario(scenario IntegrationScenario) (*IntegrationTestResult, error) {
    // Set up test environment
    ctx := ipt.harness.SetupTestContext(scenario)
    defer ctx.Cleanup()

    // Start monitoring
    for _, monitor := range ipt.monitors {
        monitor.Start(ctx)
        defer monitor.Stop()
    }

    // Execute test scenario
    start := time.Now()
    err := scenario.TestScript(ctx)
    duration := time.Since(start)

    if err != nil {
        return nil, fmt.Errorf("scenario execution failed: %v", err)
    }

    // Collect metrics
    metrics := ipt.collectMetrics(ctx)

    // Validate requirements
    validation := ipt.validateIntegrationRequirements(scenario.Requirements, metrics)

    return &IntegrationTestResult{
        Scenario:   scenario,
        Duration:   duration,
        Metrics:    metrics,
        Validation: validation,
    }, nil
}

// System-level performance testing
type SystemPerformanceTests struct {
    loadTests    []LoadTest
    stressTests  []StressTest
    enduranceTests []EnduranceTest
    spikeTests   []SpikeTest
    infrastructure *TestInfrastructure
}

func (spt *SystemPerformanceTests) RunLoadTest(test LoadTest) (*LoadTestResult, error) {
    // Deploy test environment
    env, err := spt.infrastructure.DeployTestEnvironment(test.Environment)
    if err != nil {
        return nil, err
    }
    defer env.Cleanup()

    // Configure load generators
    generators := spt.setupLoadGenerators(test)

    // Start monitoring
    monitoring := spt.startSystemMonitoring(env)
    defer monitoring.Stop()

    // Execute load test
    fmt.Printf("Starting load test: %s\n", test.Name)
    fmt.Printf("Virtual users: %d, Duration: %v\n", test.VirtualUsers, test.Duration)

    result, err := spt.executeLoadTest(generators, test.Duration)
    if err != nil {
        return nil, err
    }

    // Collect system metrics
    systemMetrics := monitoring.GetMetrics()

    // Analyze results
    analysis := spt.analyzeLoadTestResults(result, systemMetrics, test.Expectations)

    return &LoadTestResult{
        Test:          test,
        Metrics:       result,
        SystemMetrics: systemMetrics,
        Analysis:      analysis,
        Passed:        analysis.MeetsExpectations,
    }, nil
}

// Chaos engineering for performance
type ChaosPerformanceTests struct {
    experiments []ChaosExperiment
    controller  *ChaosController
}

type ChaosExperiment struct {
    Name        string
    Description string
    Hypothesis  string
    Blast       ChaosBlast
    Probe       ChaosProbe
    Rollback    ChaosRollback
}

type ChaosBlast struct {
    Type       string // "cpu_stress", "memory_pressure", "network_delay", "disk_io"
    Intensity  float64
    Duration   time.Duration
    Targets    []string
}

func (cpt *ChaosPerformanceTests) RunExperiment(experiment ChaosExperiment) (*ChaosTestResult, error) {
    // Establish baseline performance
    baseline, err := cpt.measureBaseline()
    if err != nil {
        return nil, err
    }

    // Start performance monitoring
    monitoring := cpt.startChaosMonitoring()
    defer monitoring.Stop()

    // Execute chaos blast
    fmt.Printf("Executing chaos experiment: %s\n", experiment.Name)
    blastHandle, err := cpt.controller.ExecuteBlast(experiment.Blast)
    if err != nil {
        return nil, err
    }

    // Monitor system behavior during chaos
    chaosMetrics := monitoring.CollectMetricsDuring(experiment.Blast.Duration)

    // Stop chaos blast
    err = cpt.controller.StopBlast(blastHandle)
    if err != nil {
        return nil, err
    }

    // Measure recovery performance
    recovery, err := cpt.measureRecovery(baseline)
    if err != nil {
        return nil, err
    }

    // Analyze results
    analysis := cpt.analyzeChaosResults(baseline, chaosMetrics, recovery, experiment.Hypothesis)

    return &ChaosTestResult{
        Experiment:   experiment,
        Baseline:     baseline,
        ChaosMetrics: chaosMetrics,
        Recovery:     recovery,
        Analysis:     analysis,
    }, nil
}

2. Automated Performance Validation

// Performance validation engine
type PerformanceValidator struct {
    rules       []ValidationRule
    thresholds  *PerformanceThresholds
    analyzer    *PerformanceAnalyzer
}

type ValidationRule struct {
    Name        string
    Description string
    Check       func(*PerformanceMetrics) ValidationResult
    Severity    ValidationSeverity
    Category    string
}

type ValidationSeverity int

const (
    ValidationInfo ValidationSeverity = iota
    ValidationWarning
    ValidationError
    ValidationCritical
)

func NewPerformanceValidator() *PerformanceValidator {
    return &PerformanceValidator{
        rules: []ValidationRule{
            {
                Name:        "ResponseTimeValidation",
                Description: "Validate response time meets SLA requirements",
                Check:       validateResponseTime,
                Severity:    ValidationError,
                Category:    "latency",
            },
            {
                Name:        "ThroughputValidation", 
                Description: "Validate throughput meets minimum requirements",
                Check:       validateThroughput,
                Severity:    ValidationError,
                Category:    "throughput",
            },
            {
                Name:        "MemoryLeakValidation",
                Description: "Check for memory leaks over time",
                Check:       validateMemoryLeaks,
                Severity:    ValidationCritical,
                Category:    "memory",
            },
            {
                Name:        "GoroutineLeakValidation",
                Description: "Check for goroutine leaks",
                Check:       validateGoroutineLeaks,
                Severity:    ValidationError,
                Category:    "concurrency",
            },
            {
                Name:        "ResourceUtilizationValidation",
                Description: "Validate resource utilization is within limits",
                Check:       validateResourceUtilization,
                Severity:    ValidationWarning,
                Category:    "resources",
            },
        },
        thresholds: DefaultPerformanceThresholds(),
        analyzer:   NewPerformanceAnalyzer(),
    }
}

func validateResponseTime(metrics *PerformanceMetrics) ValidationResult {
    var issues []ValidationIssue

    if metrics.ResponseTimeP95 > 500*time.Millisecond {
        issues = append(issues, ValidationIssue{
            Type:        "latency_violation",
            Description: "P95 response time exceeds 500ms threshold",
            Current:     metrics.ResponseTimeP95,
            Threshold:   500 * time.Millisecond,
            Severity:    ValidationError,
        })
    }

    if metrics.ResponseTimeP99 > 1*time.Second {
        issues = append(issues, ValidationIssue{
            Type:        "latency_violation",
            Description: "P99 response time exceeds 1s threshold",
            Current:     metrics.ResponseTimeP99,
            Threshold:   1 * time.Second,
            Severity:    ValidationCritical,
        })
    }

    return ValidationResult{
        RuleName: "ResponseTimeValidation",
        Passed:   len(issues) == 0,
        Issues:   issues,
    }
}

func validateMemoryLeaks(metrics *PerformanceMetrics) ValidationResult {
    // Analyze memory growth over time
    memoryGrowth := analyzeMemoryGrowth(metrics.MemoryTimeSeries)

    var issues []ValidationIssue

    if memoryGrowth.TrendSlope > 0.01 { // 1% growth per measurement
        issues = append(issues, ValidationIssue{
            Type:        "memory_leak",
            Description: "Sustained memory growth detected",
            Current:     memoryGrowth.TrendSlope,
            Threshold:   0.01,
            Severity:    ValidationCritical,
            Details: map[string]interface{}{
                "growth_rate": memoryGrowth.TrendSlope,
                "r_squared":   memoryGrowth.RSquared,
                "duration":    memoryGrowth.Duration,
            },
        })
    }

    return ValidationResult{
        RuleName: "MemoryLeakValidation",
        Passed:   len(issues) == 0,
        Issues:   issues,
    }
}

// Performance trend analysis
type TrendAnalyzer struct {
    window    time.Duration
    history   *PerformanceHistory
    models    map[string]*TrendModel
}

type TrendModel struct {
    Type       string    // "linear", "polynomial", "exponential"
    Parameters []float64
    RSquared   float64
    Prediction *Prediction
}

type Prediction struct {
    Value      float64
    Confidence float64
    TimeHorizon time.Duration
}

func (ta *TrendAnalyzer) AnalyzeTrend(metric string, data []DataPoint) *TrendAnalysis {
    // Linear regression for trend detection
    slope, intercept, rSquared := ta.linearRegression(data)

    // Seasonal decomposition
    seasonal := ta.detectSeasonality(data)

    // Anomaly detection
    anomalies := ta.detectAnomalies(data)

    // Future prediction
    prediction := ta.predictFuture(slope, intercept, ta.window)

    return &TrendAnalysis{
        Metric:     metric,
        Slope:      slope,
        Intercept:  intercept,
        RSquared:   rSquared,
        Seasonal:   seasonal,
        Anomalies:  anomalies,
        Prediction: prediction,
        Quality:    ta.assessTrendQuality(rSquared, len(anomalies), seasonal),
    }
}

func (ta *TrendAnalyzer) detectAnomalies(data []DataPoint) []Anomaly {
    var anomalies []Anomaly

    // Calculate statistical thresholds
    mean, stdDev := ta.calculateStats(data)
    upperThreshold := mean + 3*stdDev
    lowerThreshold := mean - 3*stdDev

    for _, point := range data {
        if point.Value > upperThreshold || point.Value < lowerThreshold {
            anomalies = append(anomalies, Anomaly{
                Timestamp: point.Timestamp,
                Value:     point.Value,
                Type:      ta.classifyAnomaly(point.Value, mean, stdDev),
                Severity:  ta.calculateAnomalySeverity(point.Value, mean, stdDev),
            })
        }
    }

    return anomalies
}

This comprehensive approach to performance engineering best practices ensures that performance considerations are deeply integrated into the development workflow, providing systematic methods for measuring, validating, and maintaining optimal application performance throughout the entire software lifecycle.

results matching ""

    No results matching ""