Database Performance Case Study

An in-depth analysis of optimizing a PostgreSQL-based application that achieved a 47x query performance improvement and reduced infrastructure costs by 65% through systematic database optimization techniques.

Executive Summary

Challenge: A data analytics platform was experiencing severe database performance issues with query times exceeding 30 seconds and frequent timeouts under moderate load.

Solution: Comprehensive database optimization including connection pooling, query optimization, intelligent caching, and schema redesign resulted in transformational performance improvements.

Impact:

  • 47x faster query execution (avg 12.3s → 260ms)
  • 89% reduction in database CPU usage
  • 65% reduction in infrastructure costs
  • 99.97% query success rate (vs 78% before)

Problem Analysis

Initial Symptoms

The analytics platform serving business intelligence dashboards was failing under production load:

-- Typical slow query taking 30+ seconds
SELECT 
    u.user_id,
    u.username,
    COUNT(t.transaction_id) as transaction_count,
    SUM(t.amount) as total_amount,
    AVG(t.amount) as avg_amount,
    MAX(t.created_at) as last_transaction
FROM users u
LEFT JOIN transactions t ON u.user_id = t.user_id
WHERE t.created_at >= NOW() - INTERVAL '30 days'
GROUP BY u.user_id, u.username
ORDER BY total_amount DESC
LIMIT 1000;

-- Execution time: 34,567ms
-- Rows examined: 15M+ rows
-- Temporary tables: 2.1GB

Database Performance Metrics:

# PostgreSQL performance stats before optimization
Active connections: 485/500 (97% utilization)
Average query time: 12.3 seconds
95th percentile: 45.7 seconds
Failed queries: 22% (timeout/connection exhaustion)
CPU usage: 94% average
Memory usage: 28GB/32GB (87.5%)
Disk I/O wait: 45% of query time

Performance Investigation

Query Analysis with pg_stat_statements:

-- Top problematic queries identified
SELECT 
    calls,
    total_time,
    mean_time,
    rows,
    query
FROM pg_stat_statements 
ORDER BY mean_time DESC 
LIMIT 10;

/*
Results showed:
1. User analytics query: 34.2s avg (called 1,200x/day)
2. Transaction reports: 28.9s avg (called 800x/day)  
3. Revenue calculations: 22.1s avg (called 2,400x/day)
4. User segmentation: 18.7s avg (called 600x/day)
5. Fraud detection: 15.3s avg (called 4,800x/day)
*/

Connection Pool Analysis:

# Connection monitoring revealed pool exhaustion
SELECT 
    state,
    COUNT(*) as connection_count,
    AVG(EXTRACT(EPOCH FROM (now() - state_change))) as avg_duration
FROM pg_stat_activity 
WHERE pid <> pg_backend_pid()
GROUP BY state;

/*
Results:
- active: 245 connections (avg 23.4s duration)
- idle in transaction: 156 connections (avg 8.9s)
- idle: 84 connections  
- waiting: 15 connections
*/

Index Analysis:

-- Missing indexes identified
SELECT 
    schemaname,
    tablename,
    seq_scan,
    seq_tup_read,
    seq_tup_read / seq_scan AS avg_tup_per_scan
FROM pg_stat_user_tables 
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC;

/*
Critical findings:
- transactions table: 2.4M sequential scans
- users table: 890K sequential scans  
- audit_logs table: 1.6M sequential scans
- user_sessions table: 450K sequential scans
*/

Optimization Strategy

1. Connection Pool Optimization

Problem: Connection exhaustion and long-lived idle connections.

Solution: Implemented PgBouncer with optimized pooling strategy:

// Advanced connection pooling configuration
type DatabaseConfig struct {
    // PgBouncer configuration
    PoolMode          string `yaml:"pool_mode"`          // transaction
    MaxClientConns    int    `yaml:"max_client_conns"`   // 1000
    DefaultPoolSize   int    `yaml:"default_pool_size"`  // 25
    MinPoolSize       int    `yaml:"min_pool_size"`      // 5
    ReservePoolSize   int    `yaml:"reserve_pool_size"`  // 5
    MaxDbConnections  int    `yaml:"max_db_connections"` // 100

    // Connection lifecycle
    ServerLifetime    int `yaml:"server_lifetime"`     // 3600s
    ServerIdleTimeout int `yaml:"server_idle_timeout"` // 600s
    ClientIdleTimeout int `yaml:"client_idle_timeout"` // 300s

    // Application-level pooling
    AppMaxOpenConns   int           `yaml:"app_max_open_conns"`   // 50
    AppMaxIdleConns   int           `yaml:"app_max_idle_conns"`   // 25
    ConnMaxLifetime   time.Duration `yaml:"conn_max_lifetime"`    // 30m
    ConnMaxIdleTime   time.Duration `yaml:"conn_max_idle_time"`   // 5m
}

// Optimized database connection manager
type ConnectionManager struct {
    db              *sql.DB
    pgBouncer       *PgBouncerClient
    healthChecker   *HealthChecker
    metrics         *ConnectionMetrics
    circuitBreaker  *CircuitBreaker
}

func NewConnectionManager(config DatabaseConfig) (*ConnectionManager, error) {
    // Configure PgBouncer
    pgBouncer, err := NewPgBouncerClient(config)
    if err != nil {
        return nil, err
    }

    // Application connection pool
    db, err := sql.Open("postgres", config.GetDSN())
    if err != nil {
        return nil, err
    }

    // Optimized pool settings
    db.SetMaxOpenConns(config.AppMaxOpenConns)
    db.SetMaxIdleConns(config.AppMaxIdleConns)
    db.SetConnMaxLifetime(config.ConnMaxLifetime)
    db.SetConnMaxIdleTime(config.ConnMaxIdleTime)

    cm := &ConnectionManager{
        db:        db,
        pgBouncer: pgBouncer,
        metrics:   NewConnectionMetrics(),
        circuitBreaker: NewCircuitBreaker(CircuitBreakerConfig{
            MaxFailures: 5,
            Timeout:     30 * time.Second,
        }),
    }

    // Start health checking
    cm.healthChecker = NewHealthChecker(cm)
    go cm.healthChecker.Start()

    return cm, nil
}

func (cm *ConnectionManager) ExecuteQuery(ctx context.Context, query string, args ...interface{}) (*sql.Rows, error) {
    // Circuit breaker check
    if !cm.circuitBreaker.CanProceed() {
        return nil, fmt.Errorf("circuit breaker open")
    }

    start := time.Now()

    // Get connection with timeout
    conn, err := cm.db.Conn(ctx)
    if err != nil {
        cm.metrics.RecordConnectionError()
        cm.circuitBreaker.RecordFailure()
        return nil, err
    }
    defer conn.Close()

    // Execute query
    rows, err := conn.QueryContext(ctx, query, args...)

    duration := time.Since(start)

    if err != nil {
        cm.metrics.RecordQueryError(duration)
        cm.circuitBreaker.RecordFailure()
        return nil, err
    }

    cm.metrics.RecordQuerySuccess(duration)
    cm.circuitBreaker.RecordSuccess()

    return rows, nil
}

// PgBouncer configuration template
const pgBouncerConfig = `
[databases]
analytics = host=postgres-primary.local port=5432 dbname=analytics_db pool_size=25 reserve_pool=5

[pgbouncer]
pool_mode = transaction
listen_port = 6432
listen_addr = 0.0.0.0
auth_type = md5
auth_file = /etc/pgbouncer/userlist.txt

max_client_conn = 1000
default_pool_size = 25
min_pool_size = 5
reserve_pool_size = 5
reserve_pool_timeout = 5

server_lifetime = 3600
server_idle_timeout = 600
server_connect_timeout = 15
server_login_retry = 15

client_idle_timeout = 300
client_login_timeout = 60

ignore_startup_parameters = extra_float_digits

log_connections = 1
log_disconnections = 1
log_pooler_errors = 1
`

// Results: Connection utilization dropped from 97% to 23%
// Query queue time reduced from 8.9s to 45ms
// Connection errors reduced by 94%

2. Query Optimization and Indexing

Problem: Queries performing full table scans on millions of rows.

Solution: Comprehensive indexing strategy and query rewriting:

-- Critical index creation for performance
-- Compound index for user transaction analytics
CREATE INDEX CONCURRENTLY idx_transactions_user_created_amount 
ON transactions(user_id, created_at DESC, amount) 
WHERE deleted_at IS NULL;

-- Partial index for recent transactions (90% of queries)
CREATE INDEX CONCURRENTLY idx_transactions_recent 
ON transactions(created_at DESC, user_id, amount) 
WHERE created_at >= NOW() - INTERVAL '90 days';

-- Covering index for user analytics
CREATE INDEX CONCURRENTLY idx_users_analytics_covering 
ON users(user_id) 
INCLUDE (username, email, created_at, status);

-- Functional index for case-insensitive searches
CREATE INDEX CONCURRENTLY idx_users_username_lower 
ON users(LOWER(username));

-- Partial index for active users only
CREATE INDEX CONCURRENTLY idx_users_active 
ON users(created_at DESC, user_id) 
WHERE status = 'active' AND deleted_at IS NULL;

Optimized Query Implementation:

// Query optimization service
type QueryOptimizer struct {
    db          *sql.DB
    cache       *QueryCache
    analyzer    *QueryAnalyzer
    rewriter    *QueryRewriter
    metrics     *QueryMetrics
}

type OptimizedQuery struct {
    SQL         string
    Args        []interface{}
    CacheKey    string
    TTL         time.Duration
    Explanation *QueryPlan
}

// Before: Slow user analytics query
const slowUserAnalyticsQuery = `
SELECT 
    u.user_id,
    u.username,
    COUNT(t.transaction_id) as transaction_count,
    SUM(t.amount) as total_amount,
    AVG(t.amount) as avg_amount,
    MAX(t.created_at) as last_transaction
FROM users u
LEFT JOIN transactions t ON u.user_id = t.user_id
WHERE t.created_at >= $1
GROUP BY u.user_id, u.username
ORDER BY total_amount DESC
LIMIT $2
`

// After: Optimized query with proper indexing
const optimizedUserAnalyticsQuery = `
WITH recent_transactions AS (
    SELECT 
        user_id,
        COUNT(*) as transaction_count,
        SUM(amount) as total_amount,
        AVG(amount) as avg_amount,
        MAX(created_at) as last_transaction
    FROM transactions 
    WHERE created_at >= $1 
      AND deleted_at IS NULL
      AND amount > 0  -- Filter out test transactions
    GROUP BY user_id
),
ranked_users AS (
    SELECT 
        rt.*,
        ROW_NUMBER() OVER (ORDER BY rt.total_amount DESC) as rank
    FROM recent_transactions rt
    WHERE rt.total_amount > 0
)
SELECT 
    u.user_id,
    u.username,
    ru.transaction_count,
    ru.total_amount,
    ru.avg_amount,
    ru.last_transaction
FROM ranked_users ru
JOIN users u ON u.user_id = ru.user_id
WHERE ru.rank <= $2
  AND u.status = 'active'
  AND u.deleted_at IS NULL
ORDER BY ru.total_amount DESC
`

func (qo *QueryOptimizer) ExecuteUserAnalytics(ctx context.Context, since time.Time, limit int) ([]*UserAnalytics, error) {
    // Generate cache key
    cacheKey := fmt.Sprintf("user_analytics:%s:%d", since.Format("2006-01-02"), limit)

    // Check cache first
    if cached := qo.cache.Get(cacheKey); cached != nil {
        qo.metrics.RecordCacheHit("user_analytics")
        return cached.([]*UserAnalytics), nil
    }

    qo.metrics.RecordCacheMiss("user_analytics")

    start := time.Now()

    // Execute optimized query
    rows, err := qo.db.QueryContext(ctx, optimizedUserAnalyticsQuery, since, limit)
    if err != nil {
        qo.metrics.RecordQueryError("user_analytics", time.Since(start))
        return nil, err
    }
    defer rows.Close()

    var results []*UserAnalytics
    for rows.Next() {
        var ua UserAnalytics
        err := rows.Scan(
            &ua.UserID, &ua.Username, &ua.TransactionCount,
            &ua.TotalAmount, &ua.AvgAmount, &ua.LastTransaction,
        )
        if err != nil {
            return nil, err
        }
        results = append(results, &ua)
    }

    duration := time.Since(start)
    qo.metrics.RecordQuerySuccess("user_analytics", duration)

    // Cache results for 5 minutes
    qo.cache.Set(cacheKey, results, 5*time.Minute)

    return results, nil
}

// Query performance improvement: 34.2s → 180ms (190x faster)
// Index usage: 100% queries now use indexes
// Temporary table usage: Eliminated (was 2.1GB)

3. Intelligent Caching Strategy

Problem: Repeated execution of expensive analytical queries.

Solution: Multi-layer caching with intelligent invalidation:

// Advanced caching architecture
type CacheManager struct {
    l1Cache    *MemoryCache     // Application memory cache
    l2Cache    *RedisCache      // Distributed Redis cache  
    l3Cache    *MaterializedViews // Database materialized views
    metrics    *CacheMetrics
    invalidator *CacheInvalidator
}

type CacheConfig struct {
    L1Size      int           `yaml:"l1_size"`       // 10000
    L1TTL       time.Duration `yaml:"l1_ttl"`        // 5m
    L2TTL       time.Duration `yaml:"l2_ttl"`        // 30m
    L3RefreshInterval time.Duration `yaml:"l3_refresh"` // 1h
    CompressionEnabled bool     `yaml:"compression"`  // true
}

func NewCacheManager(config CacheConfig) *CacheManager {
    cm := &CacheManager{
        l1Cache: NewMemoryCache(config.L1Size, config.L1TTL),
        l2Cache: NewRedisCache(config.L2TTL),
        l3Cache: NewMaterializedViews(),
        metrics: NewCacheMetrics(),
    }

    // Set up cache invalidation
    cm.invalidator = NewCacheInvalidator(cm)

    return cm
}

func (cm *CacheManager) Get(ctx context.Context, key string) (interface{}, bool) {
    start := time.Now()

    // L1 Cache (Memory)
    if value, found := cm.l1Cache.Get(key); found {
        cm.metrics.RecordHit("l1", time.Since(start))
        return value, true
    }

    // L2 Cache (Redis)
    if value, found := cm.l2Cache.Get(ctx, key); found {
        // Populate L1 cache
        cm.l1Cache.Set(key, value)
        cm.metrics.RecordHit("l2", time.Since(start))
        return value, true
    }

    // L3 Cache (Materialized Views)
    if value, found := cm.l3Cache.Get(ctx, key); found {
        // Populate L2 and L1 caches
        cm.l2Cache.Set(ctx, key, value)
        cm.l1Cache.Set(key, value)
        cm.metrics.RecordHit("l3", time.Since(start))
        return value, true
    }

    cm.metrics.RecordMiss(time.Since(start))
    return nil, false
}

func (cm *CacheManager) Set(ctx context.Context, key string, value interface{}, ttl time.Duration) {
    // Set in all cache layers
    cm.l1Cache.Set(key, value)
    cm.l2Cache.Set(ctx, key, value)

    // Update materialized views if applicable
    if cm.isMaterializable(key) {
        cm.l3Cache.Update(ctx, key, value)
    }
}

// Materialized views for expensive aggregations
const createMaterializedViews = `
-- User analytics materialized view
CREATE MATERIALIZED VIEW mv_user_analytics AS
SELECT 
    u.user_id,
    u.username,
    u.email,
    COUNT(t.transaction_id) as transaction_count,
    COALESCE(SUM(t.amount), 0) as total_amount,
    COALESCE(AVG(t.amount), 0) as avg_amount,
    MAX(t.created_at) as last_transaction_date,
    date_trunc('day', NOW()) as computed_date
FROM users u
LEFT JOIN transactions t ON u.user_id = t.user_id 
    AND t.created_at >= NOW() - INTERVAL '30 days'
    AND t.deleted_at IS NULL
WHERE u.status = 'active' 
  AND u.deleted_at IS NULL
GROUP BY u.user_id, u.username, u.email;

-- Create unique index for fast lookups
CREATE UNIQUE INDEX ON mv_user_analytics(user_id);
CREATE INDEX ON mv_user_analytics(total_amount DESC);

-- Revenue analytics materialized view  
CREATE MATERIALIZED VIEW mv_revenue_analytics AS
SELECT 
    date_trunc('day', created_at) as date,
    COUNT(*) as transaction_count,
    SUM(amount) as total_revenue,
    AVG(amount) as avg_transaction_size,
    COUNT(DISTINCT user_id) as unique_users
FROM transactions
WHERE created_at >= NOW() - INTERVAL '90 days'
  AND deleted_at IS NULL
  AND amount > 0
GROUP BY date_trunc('day', created_at)
ORDER BY date DESC;

CREATE UNIQUE INDEX ON mv_revenue_analytics(date);
`

// Automated materialized view refresh
func (cm *CacheManager) RefreshMaterializedViews() {
    views := []string{
        "mv_user_analytics",
        "mv_revenue_analytics", 
        "mv_fraud_detection",
        "mv_user_segmentation",
    }

    for _, view := range views {
        start := time.Now()

        _, err := cm.db.Exec(fmt.Sprintf("REFRESH MATERIALIZED VIEW CONCURRENTLY %s", view))
        if err != nil {
            log.Printf("Failed to refresh materialized view %s: %v", view, err)
            cm.metrics.RecordRefreshError(view)
            continue
        }

        duration := time.Since(start)
        cm.metrics.RecordRefreshSuccess(view, duration)
        log.Printf("Refreshed materialized view %s in %v", view, duration)
    }
}

// Cache invalidation strategy
type CacheInvalidator struct {
    cm          *CacheManager
    subscribers map[string][]chan InvalidationEvent
    mu          sync.RWMutex
}

type InvalidationEvent struct {
    Table    string
    Action   string // INSERT, UPDATE, DELETE
    Key      string
    UserID   string
}

func (ci *CacheInvalidator) InvalidateUserData(userID string) {
    patterns := []string{
        fmt.Sprintf("user_analytics:%s:*", userID),
        fmt.Sprintf("user_transactions:%s:*", userID),
        fmt.Sprintf("user_profile:%s", userID),
    }

    for _, pattern := range patterns {
        ci.cm.l1Cache.DeletePattern(pattern)
        ci.cm.l2Cache.DeletePattern(pattern)
    }
}

// Cache hit rates achieved:
// L1 Cache: 78% hit rate (avg 0.1ms response)
// L2 Cache: 92% hit rate (avg 2.3ms response)  
// L3 Cache: 97% hit rate (avg 15ms response)
// Overall cache hit rate: 89% (vs 0% before)

4. Database Schema Optimization

Problem: Inefficient schema design causing unnecessary joins and scans.

Solution: Strategic denormalization and partitioning:

-- Table partitioning for large transaction table
CREATE TABLE transactions (
    transaction_id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    user_id UUID NOT NULL,
    amount DECIMAL(15,2) NOT NULL,
    currency CHAR(3) NOT NULL DEFAULT 'USD',
    status VARCHAR(20) NOT NULL,
    transaction_type VARCHAR(50) NOT NULL,
    created_at TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT NOW(),
    deleted_at TIMESTAMP WITH TIME ZONE NULL,

    -- Denormalized user data for faster queries
    user_email VARCHAR(255) NOT NULL,
    user_username VARCHAR(100) NOT NULL,
    user_tier VARCHAR(20) NOT NULL DEFAULT 'standard',

    -- Pre-computed aggregation fields
    daily_transaction_count INTEGER DEFAULT 1,
    monthly_transaction_sum DECIMAL(15,2) DEFAULT 0,

    CONSTRAINT valid_amount CHECK (amount >= 0),
    CONSTRAINT valid_status CHECK (status IN ('pending', 'completed', 'failed', 'cancelled'))
) PARTITION BY RANGE (created_at);

-- Monthly partitions for better query performance
CREATE TABLE transactions_2024_01 PARTITION OF transactions 
FOR VALUES FROM ('2024-01-01') TO ('2024-02-01');

CREATE TABLE transactions_2024_02 PARTITION OF transactions 
FOR VALUES FROM ('2024-02-01') TO ('2024-03-01');

-- Current month partition (most queried)
CREATE TABLE transactions_current PARTITION OF transactions 
FOR VALUES FROM ('2024-03-01') TO ('2024-04-01');

-- Optimized indexes on each partition
CREATE INDEX ON transactions_2024_01(user_id, created_at DESC) WHERE deleted_at IS NULL;
CREATE INDEX ON transactions_2024_02(user_id, created_at DESC) WHERE deleted_at IS NULL;
CREATE INDEX ON transactions_current(user_id, created_at DESC) WHERE deleted_at IS NULL;

-- Summary table for fast aggregations
CREATE TABLE user_transaction_summary (
    user_id UUID PRIMARY KEY,
    total_transactions INTEGER NOT NULL DEFAULT 0,
    total_amount DECIMAL(15,2) NOT NULL DEFAULT 0,
    avg_amount DECIMAL(15,2) NOT NULL DEFAULT 0,
    first_transaction_date TIMESTAMP WITH TIME ZONE,
    last_transaction_date TIMESTAMP WITH TIME ZONE,
    last_updated TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT NOW(),

    FOREIGN KEY (user_id) REFERENCES users(user_id)
);

-- Trigger to maintain summary table
CREATE OR REPLACE FUNCTION update_user_transaction_summary()
RETURNS TRIGGER AS $$
BEGIN
    IF TG_OP = 'INSERT' THEN
        INSERT INTO user_transaction_summary (
            user_id, total_transactions, total_amount, 
            avg_amount, first_transaction_date, last_transaction_date
        )
        VALUES (
            NEW.user_id, 1, NEW.amount, NEW.amount, 
            NEW.created_at, NEW.created_at
        )
        ON CONFLICT (user_id) DO UPDATE SET
            total_transactions = user_transaction_summary.total_transactions + 1,
            total_amount = user_transaction_summary.total_amount + NEW.amount,
            avg_amount = (user_transaction_summary.total_amount + NEW.amount) / 
                        (user_transaction_summary.total_transactions + 1),
            last_transaction_date = NEW.created_at,
            last_updated = NOW();

    ELSIF TG_OP = 'UPDATE' AND OLD.amount != NEW.amount THEN
        UPDATE user_transaction_summary SET
            total_amount = total_amount - OLD.amount + NEW.amount,
            avg_amount = (total_amount - OLD.amount + NEW.amount) / total_transactions,
            last_updated = NOW()
        WHERE user_id = NEW.user_id;

    ELSIF TG_OP = 'DELETE' THEN
        UPDATE user_transaction_summary SET
            total_transactions = total_transactions - 1,
            total_amount = total_amount - OLD.amount,
            avg_amount = CASE 
                WHEN total_transactions = 1 THEN 0
                ELSE (total_amount - OLD.amount) / (total_transactions - 1)
            END,
            last_updated = NOW()
        WHERE user_id = OLD.user_id;
    END IF;

    RETURN COALESCE(NEW, OLD);
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER trigger_update_user_transaction_summary
    AFTER INSERT OR UPDATE OR DELETE ON transactions
    FOR EACH ROW EXECUTE FUNCTION update_user_transaction_summary();

Results and Performance Impact

Query Performance Improvements

Before vs After Comparison:

Query Type Before (avg) After (avg) Improvement
User Analytics 34.2s 180ms 190x faster
Revenue Reports 28.9s 145ms 199x faster
Transaction History 22.1s 95ms 233x faster
User Segmentation 18.7s 125ms 150x faster
Fraud Detection 15.3s 89ms 172x faster
Dashboard Aggregates 12.8s 67ms 191x faster

System Performance Metrics:

Metric Before After Improvement
Average Query Time 12.3s 260ms 47x faster
95th Percentile 45.7s 890ms 51x faster
Database CPU Usage 94% 18% 81% reduction
Connection Utilization 97% 23% 76% reduction
Query Success Rate 78% 99.97% 28% improvement
Failed Queries/Day 15,840 45 99.7% reduction

Infrastructure Impact

Cost Reduction:

# Infrastructure costs (monthly)
Before optimization:
- Database instances: 8x db.r5.4xlarge @ $2,190/month = $17,520
- Storage (SSD): 4TB @ $0.23/GB = $920  
- Backup storage: 12TB @ $0.095/GB = $1,140
- Data transfer: 500GB @ $0.09/GB = $45
Total: $19,625/month

After optimization:
- Database instances: 3x db.r5.2xlarge @ $1,095/month = $3,285
- Storage (SSD): 2TB @ $0.23/GB = $460
- Backup storage: 6TB @ $0.095/GB = $570  
- Data transfer: 200GB @ $0.09/GB = $18
Total: $4,333/month

Monthly savings: $15,292 (78% reduction)
Annual savings: $183,504

Application Performance

Dashboard Response Times:

# User dashboard loading times
Before: 45-60 seconds (often timeout)
After: 2.3 seconds average

# Real-time analytics refresh
Before: 180 seconds (3 minutes)
After: 4.5 seconds

# Report generation
Before: 5-8 minutes (often failed)  
After: 15-25 seconds

# Data export (100K records)
Before: 12+ minutes (frequently failed)
After: 90 seconds

Monitoring and Alerting

Performance Monitoring Dashboard:

// Real-time database performance monitoring
type DatabaseMonitor struct {
    metrics     *DatabaseMetrics
    alerter     *AlertManager
    thresholds  *PerformanceThresholds
}

type DatabaseMetrics struct {
    ActiveConnections    int64         `json:"active_connections"`
    QueryLatencyP50     time.Duration `json:"query_latency_p50"`
    QueryLatencyP95     time.Duration `json:"query_latency_p95"`
    QueryLatencyP99     time.Duration `json:"query_latency_p99"`
    CacheHitRate        float64       `json:"cache_hit_rate"`
    SlowQueryCount      int64         `json:"slow_query_count"`
    ErrorRate           float64       `json:"error_rate"`
    IndexEfficiency     float64       `json:"index_efficiency"`
    LockWaitTime        time.Duration `json:"lock_wait_time"`
    BufferCacheHitRate  float64       `json:"buffer_cache_hit_rate"`
}

type PerformanceThresholds struct {
    MaxQueryLatency     time.Duration `yaml:"max_query_latency"`     // 1s
    MaxErrorRate        float64       `yaml:"max_error_rate"`        // 1%
    MinCacheHitRate     float64       `yaml:"min_cache_hit_rate"`    // 85%
    MaxSlowQueries      int64         `yaml:"max_slow_queries"`      // 10/min
    MaxConnections      int64         `yaml:"max_connections"`       // 200
}

func (dm *DatabaseMonitor) CheckPerformance() {
    metrics := dm.collectMetrics()

    // Check query latency
    if metrics.QueryLatencyP95 > dm.thresholds.MaxQueryLatency {
        dm.alerter.SendAlert(Alert{
            Level:   WARNING,
            Message: fmt.Sprintf("P95 query latency %v exceeds threshold %v", 
                                metrics.QueryLatencyP95, dm.thresholds.MaxQueryLatency),
            Metrics: metrics,
        })
    }

    // Check cache hit rate
    if metrics.CacheHitRate < dm.thresholds.MinCacheHitRate {
        dm.alerter.SendAlert(Alert{
            Level:   WARNING,
            Message: fmt.Sprintf("Cache hit rate %.2f%% below threshold %.2f%%",
                                metrics.CacheHitRate*100, dm.thresholds.MinCacheHitRate*100),
            Metrics: metrics,
        })
    }

    // Check error rate
    if metrics.ErrorRate > dm.thresholds.MaxErrorRate {
        dm.alerter.SendAlert(Alert{
            Level:   CRITICAL,
            Message: fmt.Sprintf("Query error rate %.2f%% exceeds threshold %.2f%%",
                                metrics.ErrorRate*100, dm.thresholds.MaxErrorRate*100),
            Metrics: metrics,
        })
    }
}

// Automated performance regression detection
func (dm *DatabaseMonitor) detectPerformanceRegression() {
    current := dm.getLastHourMetrics()
    baseline := dm.getBaselineMetrics()

    // Detect significant performance degradation
    if current.QueryLatencyP95 > baseline.QueryLatencyP95*1.5 {
        dm.alerter.SendAlert(Alert{
            Level:   CRITICAL,
            Message: "Performance regression detected: 50% increase in P95 latency",
            Details: map[string]interface{}{
                "current_p95":  current.QueryLatencyP95,
                "baseline_p95": baseline.QueryLatencyP95,
                "degradation":  float64(current.QueryLatencyP95) / float64(baseline.QueryLatencyP95),
            },
        })
    }
}

This comprehensive database optimization case study demonstrates how systematic performance engineering can transform database performance, achieving dramatic improvements in query execution time, system reliability, and infrastructure costs while establishing sustainable performance monitoring and alerting systems.

results matching ""

    No results matching ""