Profiling Tools Overview

This section covers the complete ecosystem of Go profiling tools, from built-in runtime profilers to advanced third-party solutions. Master these tools to diagnose and optimize any performance issue.

Tool Categories

๐Ÿ”ง Built-in Go Tools

  • go tool pprof - Primary profiling interface
  • go tool trace - Execution tracing and analysis
  • go test -bench - Benchmarking framework
  • Runtime diagnostics - Built-in performance monitoring

๐Ÿ“Š Profile Types

๐ŸŒ Third-party Tools

  • Flamegraph tools - Visual profile analysis
  • Continuous profiling platforms - Production monitoring
  • Performance testing frameworks - Load and stress testing

Quick Reference Guide

Essential Commands

# Live profiling from running application
go tool pprof http://localhost:6060/debug/pprof/profile     # CPU
go tool pprof http://localhost:6060/debug/pprof/heap        # Memory
go tool pprof http://localhost:6060/debug/pprof/goroutine   # Goroutines

# Benchmark profiling
go test -bench=. -cpuprofile=cpu.prof -memprofile=mem.prof

# Profile analysis
go tool pprof -http=:8080 cpu.prof                         # Web interface
go tool pprof cpu.prof                                      # Interactive CLI

# Execution tracing
go test -trace=trace.out
go tool trace trace.out

Profile Collection Methods

Method Use Case Pros Cons
Live HTTP Production monitoring Real traffic, no restart Network overhead
Benchmark Development optimization Repeatable, controlled Synthetic workload
Programmatic Custom integration Full control Requires code changes
Signal-based Emergency debugging No restart needed Limited control

Tool Selection Guide

Choose CPU Profiling When:

  • โœ… Functions consuming excessive CPU time
  • โœ… Algorithm optimization needed
  • โœ… Hot path identification required
  • โœ… Baseline performance measurement

Choose Memory Profiling When:

  • โœ… High memory usage or leaks suspected
  • โœ… Garbage collection pressure
  • โœ… Allocation pattern analysis needed
  • โœ… Memory optimization opportunities

Choose Goroutine Profiling When:

  • โœ… Concurrency issues or deadlocks
  • โœ… Goroutine leaks suspected
  • โœ… Scheduler analysis needed
  • โœ… Channel operation debugging

Choose Blocking Profiling When:

  • โœ… Lock contention suspected
  • โœ… I/O bottlenecks present
  • โœ… Synchronization issues
  • โœ… Channel blocking analysis

Advanced Profiling Workflows

Multi-Profile Analysis

# Collect comprehensive profile set
go test -bench=BenchmarkCritical \
  -cpuprofile=cpu.prof \
  -memprofile=mem.prof \
  -blockprofile=block.prof \
  -mutexprofile=mutex.prof \
  -trace=trace.out

# Analyze relationships between profiles
go tool pprof -http=:8080 cpu.prof &
go tool pprof -http=:8081 mem.prof &
go tool trace trace.out

Production Profiling Pipeline

#!/bin/bash
# production-profile.sh

SERVICE_URL="http://production-service:6060"
PROFILE_DIR="profiles/$(date +%Y%m%d-%H%M%S)"

mkdir -p "$PROFILE_DIR"

# Collect all profile types
go tool pprof -seconds=30 -output="$PROFILE_DIR/cpu.prof" "$SERVICE_URL/debug/pprof/profile"
go tool pprof -output="$PROFILE_DIR/heap.prof" "$SERVICE_URL/debug/pprof/heap"
go tool pprof -output="$PROFILE_DIR/goroutine.prof" "$SERVICE_URL/debug/pprof/goroutine"
go tool pprof -output="$PROFILE_DIR/mutex.prof" "$SERVICE_URL/debug/pprof/mutex"

# Generate reports
go tool pprof -top -output="$PROFILE_DIR/cpu-top.txt" "$PROFILE_DIR/cpu.prof"
go tool pprof -top -output="$PROFILE_DIR/heap-top.txt" "$PROFILE_DIR/heap.prof"

echo "Profiles collected in $PROFILE_DIR"

Tool Integration Patterns

Development Workflow

// Integrated profiling in development
func main() {
    if *profileFlag {
        defer profile.Start(
            profile.CPUProfile,
            profile.MemProfile,
            profile.ProfilePath("."),
        ).Stop()
    }

    // Application logic
    runApplication()
}

Continuous Integration

# .github/workflows/performance.yml
name: Performance Testing
on: [push, pull_request]

jobs:
  benchmark:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - uses: actions/setup-go@v2
        with:
          go-version: 1.24

      - name: Run benchmarks
        run: |
          go test -bench=. -benchmem \
            -cpuprofile=cpu.prof \
            -memprofile=mem.prof \
            ./...

      - name: Analyze profiles
        run: |
          go tool pprof -top cpu.prof > cpu-analysis.txt
          go tool pprof -top mem.prof > mem-analysis.txt

      - name: Upload artifacts
        uses: actions/upload-artifact@v2
        with:
          name: performance-profiles
          path: |
            *.prof
            *-analysis.txt

Best Practices Summary

โœ… Do's

  • Profile first, optimize second - Measure before making changes
  • Use multiple profile types - Get complete performance picture
  • Profile production workloads - Real data reveals real issues
  • Automate profile collection - Make profiling part of your workflow
  • Compare before/after - Validate optimization effectiveness

โŒ Don'ts

  • Don't guess at bottlenecks - Always measure and verify
  • Don't profile toy examples - Use realistic workloads
  • Don't ignore low-hanging fruit - Address obvious issues first
  • Don't over-optimize - Balance development time vs. performance gains
  • Don't forget production impact - Consider profiling overhead

Learning Path

Beginner (2-4 hours)

  1. Basic CPU Profiling
  2. Memory Profiling Basics
  3. Practice with sample applications

Intermediate (6-8 hours)

  1. Advanced CPU Techniques
  2. Goroutine Analysis
  3. Blocking Operations
  4. Multi-profile correlation

Advanced (10+ hours)

  1. Custom Profiling
  2. Production Monitoring
  3. Flamegraph Analysis
  4. Performance testing integration

Tools Ecosystem

Core Go Tools

# Built into Go toolchain
go tool pprof     # Profile analysis
go tool trace     # Execution tracing
go tool compile   # Compiler diagnostics
go tool objdump   # Assembly analysis

Essential Extensions

# Install additional tools
go install github.com/google/pprof@latest
go install github.com/pkg/profile@latest
go install golang.org/x/tools/cmd/stress@latest

# Flamegraph generation
git clone https://github.com/brendangregg/FlameGraph.git
export PATH=$PATH:$PWD/FlameGraph
  • Grafana Pyroscope - Continuous profiling platform
  • DataDog Profiler - Commercial profiling service
  • Go-torch - Flamegraph generation (legacy)
  • Hey/AB - HTTP load testing with profiling

Next Steps

Ready to dive into specific profiling techniques? Choose your path:

Each section builds comprehensive expertise in its profiling domain, with practical examples and production-ready techniques.


Remember: The best profiling strategy combines multiple tools and techniques to get a complete performance picture. Start simple, then layer on complexity as needed.

results matching ""

    No results matching ""